STATE OF CALIFORNIA
DEPARTMENT OF HEALTH SERVICES
WATER DISTRIBUTION OPERATOR CERTIFICATION PROGRAM

Units and Conversion Factors
1 cubic foot of water weighs 62.3832 lb
1 gallon of water weighs 8.34 lb
1 liter of water weighs $1,000 \mathrm{gm}$
$1 \mathrm{mg} / \mathrm{L}=1$ part per million (ppm)
$1 \mathrm{ug} / \mathrm{L}=1$ part per billion (ppb)
1 mile $=5,280$ feet (ft)
$1 \mathrm{yd}=3$ feet
$1 \mathrm{yd}^{3}=27 \mathrm{ft}^{3}$
1 acre (a) $=43,560$ square feet $\left(\mathrm{ft}^{2}\right)$
1 acre foot $=325,829$ gallons
1 cubic foot $\left(\mathrm{ft}^{3}\right)=7.48$ gallons (gal)
$1 \mathrm{gal}=3.785$ liters (L)
$1 \mathrm{~L}=1,000$ milliliters (ml)
1 pound (b) $=454$ grams (gm)
$1 \mathrm{lb}=7,000$ grains (gr)
1 grain per gallon $(\mathrm{gpg})=17.1 \mathrm{mg} / \mathrm{L}$
$1 \mathrm{gm}=1,000$ milligrams (mg)
$1 \mathrm{gm}=1,000,000$ micrograms (ug)

CHLORINATION

Dosage, $\mathrm{mg} / \mathrm{I}=($ Demand, $\mathrm{mg} / \mathrm{l})+($ Residual, $\mathrm{mg} / \mathrm{l})$
(Gas) Ibs/day $=($ Vol, $M G) \times($ Dosage, mg$) \times(8.34 \mathrm{lbs} / \mathrm{gal})$

HTH Solid (lbs/day) =
$($ Vol, MG $) \times($ Dosage, $\mathrm{mg} / \mathrm{I}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$
(\% Strength)

Liquid (gal/day) =
(Vol, MG) $\times($ Dosage, $\mathrm{mg} / \mathrm{I}) \times(8.34 \mathrm{lbs} / \mathrm{gal})$
(\% Strength) \times (Specific Gravity $\times 8.34$)

PRESSURE

```
PSI = (Head,ft.)
```

lbs Force $=(0.785)(\mathrm{D}, \mathrm{ft})^{2} \times 144 \mathrm{in}^{2} / \mathrm{ft}^{2} \mathrm{PSI}$.

VOLUME

Rectangular Basin =

Volume, gal
(Length, ft) \times (Width, ft) \times (Height, ft) $\times 7.48$ gal/cu.ft.
Cylinder, Volume, gal $=$
(0.785) \times (Dia, ft) $)^{2} \times\left(\right.$ Height, Length, or Depth, inft.) $\times 7.48$ gal/t ${ }^{3}$

Time, Hrs. =
Volume, gallons
(Pumping Rate, GPM, x $60 \mathrm{Min} / \mathrm{Hr}$)
Supply, Hrs.= Storage Volume, Gals
(Flow In, GPM - Flow Out, GPM) $\times 60$ min/hr.)

SOLUTIONS

Lbs/Gal $=\frac{(\text { Solution \%) }}{100} \times 8.34 \mathrm{lbs} /$ gal \times Specific Gravity

Lbs Chemical =
Specific Gravity $\times 8.34$ Ibs/gallons \times Solution(gal)
Specific Gravity $=\frac{\text { Chemical Wt. (lbs/gal) }}{8.34(\mathrm{bs} / \mathrm{gal})}$
8.34 (lbs/gal)
\% of Chemical $=$ (Dry Chemical, Lbs) $\times 100$
in Solution (Dry Wt. Chemical, Lbs) + (Water, Lbs)

GPD $=\frac{(\mathrm{Vol}, \mathrm{MG}) \times(\text { Conc., } \mathrm{mg} / \mathrm{l}) \times(8.34 \mathrm{l} \mathrm{l} / \mathrm{gal})}{(\% \text { Strength }) \times \text { Chemical } \mathrm{Wt}(\mathrm{bs} / \mathrm{gal})}$ (\% Strength) x Chemical Wt. (lbs/gal)

GPD $=\frac{(\text { Feed }, \mathrm{ml} / \mathrm{min} . \times 1,440 \mathrm{~min} / \mathrm{day})}{(1,000 \mathrm{~m} / \mathrm{x} \times 705 \mathrm{Gal})}$
(1,000 ml/L x $3.785 \mathrm{~L} / \mathrm{Gal})$

Two-Normal Equations:
a) $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$

$$
\frac{\mathrm{Q}_{1}}{\mathrm{~V}_{1}}=\frac{\mathrm{Q}_{2}}{\mathrm{~V}_{2}^{2}}
$$

b) $\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}=\mathrm{C}_{3} \mathrm{~V}_{3}$
$\mathrm{C}=$ Concentration,$\quad \mathrm{V}=$ Volume,$\quad \mathrm{Q}=$ Flow

PUMPING

1 horsepower $(\mathrm{Hp})=746$ watts $=0.746 \mathrm{kw}=3,960 \mathrm{ga} / \mathrm{min} / \mathrm{tt}$
Water Hp $=\frac{(\text { GPM }) \times(\text { Total Head, } \mathrm{tt})}{(3,960 \text { gal }}$ (3,960 ga/min $/ \mathrm{t}$)

Brake Hp $=\frac{(\mathrm{GPM}) \times(\text { Total Head, } \mathrm{ft})}{(3,960) \times(\text { Pump } \% \text { Efficiency })}$
Motor Hp $=(\mathrm{GPM}) \times($ Total Head, ft$)$ $(3,960) \times$ Pump \%Eff. xMotor \%Eff.
"Wire to Water" Efficiency
$=\quad($ Motor, \% Efficiency \times Pump \% Efficiency $)$
Cost, \$ =
(Hp) $\times(0.746 \mathrm{Kw} / \mathrm{Hp}) \times$ (Operating Hrs. $) \times$ cents $/ \mathrm{Kw}-\mathrm{Hr}$

Flow, velocity, area

$\bar{Q}=\mathrm{A} \times \mathrm{V} \quad$ Quantity $=$ Area \times Velocity
Flow $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)=$ Area $\left(\mathrm{ft}^{2}\right) \times$ Velocity $(\mathrm{ft} / \mathrm{sec})$

General

(\$) Cost / day $=$ Lbs/day \times (\$) Costllb
Removal, Percent $=\frac{(\ln -\text { Out })}{\ln } \times 100$

Specific Capacity, GPM/ft. $=\frac{\text { Well Yield, GPM }}{\text { Drawdown, ft. }}$
Gals/Day $=$ (Population) $\times($ Gals/Capita/Day $)$
GPD $=\frac{(\text { Meter Read } 2-\text { Meter Read 1 })}{(\text { Number of Days })}$
Volume, Gals $=$ GPM \times Time, minutes
SCADA $=4 \mathrm{~mA}$ to 20 mA analog signal
(live signal $\mathrm{mA}-4 \mathrm{~mA}$ off set) x process unit and range
(16 mAspan)
$4 \mathrm{~mA}=0 \quad 20 \mathrm{~mA}$ full -range

